Serotonergic neurons activate chemosensitive retrotrapezoid nucleus neurons by a pH-independent mechanism.

نویسندگان

  • Daniel K Mulkey
  • Diane L Rosin
  • Gavin West
  • Ana C Takakura
  • Thiago S Moreira
  • Douglas A Bayliss
  • Patrice G Guyenet
چکیده

Serotonin activates respiration and enhances the stimulatory effect of CO2 on breathing. The present study tests whether the mechanism involves the retrotrapezoid nucleus (RTN), a group of medullary glutamatergic neurons activated by extracellular brain pH and presumed to regulate breathing. We show that the RTN is innervated by both medullary and pontine raphe and receives inputs from thyrotropin-releasing hormone (TRH) and substance P-expressing neurons. Coexistence of serotonin and substance P in terminals within RTN confirmed that lower medullary serotonergic neurons innervate RTN. In vivo, unilateral injection of serotonin into RTN stimulated inspiratory motor activity, and pH-sensitive RTN neurons were activated by iontophoretic application of serotonin or substance P. In brain slices, pH-sensitive RTN neurons were activated by serotonin, substance P, and TRH. The effect of serotonin in slices was ketanserin sensitive and persisted in the presence of glutamate, GABA, glycine, and purinergic ionotropic receptor antagonists. Serotonin and pH had approximately additive effects on the discharge rate of RTN neurons, both in slices and in vivo. In slices, serotonin produced an inward current with little effect on conductance and had no effect on the pH-induced current. We conclude that (1) RTN receives input from multiple raphe nuclei, (2) serotonin, substance P, and TRH activate RTN chemoreceptors, and (3) excitatory effects of serotonin and pH are mediated by distinct ionic conductances. Thus, RTN neurons presumably contribute to the respiratory stimulation caused by serotonergic neurons, but serotonin seems without effect on the cellular mechanism by which RTN neurons detect pH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Specific Lesion of Non Serotonergic Pathway on Neurons of Nucleus Raphe Magnus Morphology in Rat

Purpose: The nucleus raphe magnus (NRM) is a medullary nucleus containing serotonergic and non serotonergic neurons, both of which densely project to spinal cord. The goal of this study was to determine the role of these non serotonergic neurons in pain perception and their cytological changes after the specific lesion of bulbo-spinal serotonergic pathway. Materials and Methods: Male rats were...

متن کامل

pH regulating transporters in neurons from various chemosensitive brainstem regions in neonatal rats.

We studied the membrane transporters that mediate intracellular pH (pH(i)) recovery from acidification in brainstem neurons from chemosensitive regions of neonatal rats. Individual neurons within brainstem slices from the retrotrapezoid nucleus (RTN), the nucleus tractus solitarii (NTS), and the locus coeruleus (LC) were studied using a pH-sensitive fluorescent dye and fluorescence imaging micr...

متن کامل

Phox2b-expressing retrotrapezoid neurons are intrinsically responsive to H+ and CO2.

Central respiratory chemoreceptors sense changes in CO2/H(+) and initiate the adjustments to ventilation required to preserve brain and tissue pH. The cellular nature of the sensors (neurons and/or glia) and their CNS location are not conclusively established but the glutamatergic, Phox2b-expressing neurons located in the retrotrapezoid nucleus (RTN) are strong candidates. However, a direct dem...

متن کامل

The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO2

Maintaining constant CO2 and H(+) concentrations in the arterial blood is critical for life. The principal mechanism through which this is achieved in mammals is the respiratory chemoreflex whose circuitry is still elusive. A candidate element of this circuitry is the retrotrapezoid nucleus (RTN), a collection of neurons at the ventral medullary surface that are activated by increased CO2 or lo...

متن کامل

TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity.

Central respiratory chemoreception is the mechanism by which the CNS maintains physiologically appropriate pH and PCO2 via control of breathing. A prominent hypothesis holds that neural substrates for this process are distributed widely in the respiratory network, especially because many neurons that make up this network are chemosensitive in vitro. We and others have proposed that TASK channel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 51  شماره 

صفحات  -

تاریخ انتشار 2007